公众号
关注微信公众号
移动端
创头条企服版APP

隐私计算:为数据而生,为隐私而战

2745
玳慧数字 2023-09-19 13:23 抢发第一评

数字经济时代,数据作为新的生产要素和战略性资源,是科技进步、政策制定和经济发展的重要动力。但是,只有在隐私和安全得到保障的前提下,数据的价值才能最大化。

近年来,随着《网络安全法》《数据安全法》和《个人信息保护法》的颁布与实施,国家、行业、地方相继出台了一系列数据安全相关配套性政策文件,完善数据要素治理制度,保障数据流通交易安全。特别是 2022 年底发布的「数据二十条」,进一步推动了公共数据、企业数据、个人数据合规高效流通使用,数据「可用不可见」「可控可计量」成为法定要求。

在推动数据二十条理念落地的途径中,隐私计算作为平衡数据流通与价值释放的关键「技术解」,得到了越来越多的重视。在 2022 年 Gartner 技术成熟度曲线列出的 25 项值得关注的新兴技术中,有 6 项与隐私计算相关,足见其价值与潜力。

640.png

今年 1 月,工信部、国家网信办、国家发改委等 16 部门印发《关于促进数据安全产业发展的指导意见》,明确提出加强隐私计算、数据流转分析等关键技术攻关,加强数据质量评估、隐私计算等产品研发。隐私计算产业也在加速崛起。中国信息通信研究院报告指出,预计到 2025 年,中国的隐私计算市场规模将达到百亿元人民币。

隐私计算是隐私保护计算(Privacy-preserving Computation)的简称,它能够在保证数据提供方不泄露原始数据的前提下,对数据进行分析、处理和使用,是一个广义的概念,涉及人工智能、密码学、数据科学等众多学科和领域的交叉融合,涵盖了安全多方计算、同态加密、差分隐私、零知识证明、联邦学习、可信执行环境等众多技术子项,以及这些技术子项的组合及相关产品方案。

根据目前中国业界共识,隐私计算主要分为以安全多方计算为代表的密码学路径、以机密计算为代表的可信执行环境(硬件)路径,以及以联邦学习为代表的人工智能路径。

安全多方计算(Secure Multi-Party Computation)

由图灵奖得主姚期智院士于 1982 年通过提出和解答「百万富翁问题」而创立。安全多方计算能保证各参与方仅获得正确计算结果,无法获得除计算结果之外的任何信息,是多种密码学基础工具的综合应用,除混淆电路、秘密分享、不经意传输等密码学原理构造的经典多方安全计算协议外,其他所有用于实现多方安全计算的密码学算法(如同态加密、零知识证明),都可以构成多方安全计算协议。经过 30 多年的理论研究,安全多方计算在技术上已趋成熟,在需要识别共同客户或兴趣但又要保护其他数据的场景下,例如医疗领域进行共同研究,或是企业之间分享数据以提高业务效率,已发挥出重要的应用价值。

机密计算(Confidential Computing)

机密计算的基本原理是将需要保护的数据或代码存储在可信执行环境(Trusted Execution Environment,TEE)中,对这些数据和代码的任何访问都必须经过基于硬件的访问控制,防止其在使用中未经授权被访问或修改,从而实现对数据处理流程的可验证与控制,增强数据的安全性。其中,可信执行环境定义为可在数据机密性、数据完整性和代码完整性三方面提供一定保护水平的环境,也包括云环境。

联邦学习(Federated Learning)

联邦学习由 Google 在 2016 年提出,其核心思想是允许两个或多个参与方在数据不出域的情况下,协同完成模型的构建与使用,强调「数据不动模型动,数据可用不可见」,适用于参与用户多、数据特征多且分布广泛的联合计算应用场景。根据参与计算的数据在数据方之间分布的情况不同,可以分为横向联邦学习、纵向联邦学习和联邦迁移学习。通常情况下,联邦学习需要与其他隐私保护技术联合使用,才能在计算过程中实现对数据的保护。

目前,隐私计算正处于飞速发展阶段,单点技术持续优化,在实际应用中呈现出多技术融合的态势,以应对不同场景下的数据安全和隐私保护需求。根据 Gartner《2022 隐私技术成熟度曲线》报告,预计未来 5-10 年隐私计算技术会被大规模商业化应用,到 2025 年 60% 以上的大型组织将在数据分析、商业智能或云计算中使用一种或多种隐私计算技术。

随着数据安全合规流通成为必然,隐私计算作为当下实现数据「可用不可见」的唯一技术解,对未来的科技产业以及实体经济的关键领域将产生重要影响。除了典型的金融、医疗等场景,隐私计算也将被探索用于越来越多场景,行业与领域。

充分释放数据的价值能够推动革命性的创新,试想一个个比 ChatGPT 更加智能的产品进入生活,了解我们的兴趣与习惯,提供定制化服务,让工作和生活变得前所未有的便利与个性化。在这一过程中,隐私计算将作为新技术应用中不可或缺的一部分,让数据在创造价值的同时保持安全可控,守护人们对隐私保护的合理预期。

来源:凤凰网科技

图片来源:gartner.com

声明:该文章版权归原作者所有,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系。
您阅读这篇文章花了0
转发这篇文章只需要1秒钟
喜欢这篇 0
评论一下 0
相关文章
评论
试试以这些内容开始评论吧
登录后发表评论
热文
阿里云创新中心
热文
×
#热门搜索#
精选双创服务
历史搜索 清空

Tel:18514777506

关注微信公众号

创头条企服版APP